Non-local continuum modeling of carbon nanotubes; computation of spatial kernal using helical symmetry lattice dynamics

نویسندگان

  • Veera Sundararaghavan
  • Anthony M. Waas
چکیده

The longitudinal, transverse and torsional wave dispersion curves in single walled carbon nanotubes (SWCNT) are used to estimate the non-local kernel for use in continuum elasticity models of nanotubes. The dispersion data for an armchair (10,10) SWCNT was obtained using lattice dynamics of SWNTs while accounting for the helical symmetry of the tubes. In our approach, the Fourier transformed kernel of non-local linear elastic theory is directly estimated by matching the atomistic data to the dispersion curves predicted from non local beam theory and axisymmetric shell theory. The distribution of kernel weights in the Fourier space indicate that a Gaussian kernel can o er a better prediction for wave dispersion in CNTs than the non-local kernel from gradient theory. Reconstructions of these kernels are provided in this paper and the dispersion data obtained from such kernels are directly compared with gradient theories. The numerically computed kernels obtained from this study will help in development of improved and e cient continuum models for predicting the mechanical response of CNTs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-local continuum modeling of carbon nanotubes: physical interpretation of non-local kernels using atomistic simulations

The longitudinal, transverse and torsional wave dispersion curves in single walled carbon nanotubes (SWCNT) are used to estimate the non-local kernel for use in continuum elasticity models of nanotubes. The dispersion data for an armchair (10,10) SWCNT was obtained using lattice dynamics of SWNTs while accounting for the helical symmetry of the tubes. In our approach, the Fourier transformed ke...

متن کامل

Inelastic Continuum Modeling of Carbon Nanotube,s Behavior Using Finite Element Method

This paper describes a continuum model for analyzing the inelastic behavior of a single walled carbon nanotube (SWCNT) in different loading conditions. Because of limitations in using molecular dynamics (and other atomic methods) to model the failure load of the SWCNT, continuum mechanics methods are considered in this paper. Based on some experimental and theoretical results, an elasto-plastic...

متن کامل

Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice s...

متن کامل

A dynamic lattice model for heterogeneous materials

In this paper, the mechanical behavior of three-phase inhomogeneous materials is modeled using the meso-scale model with lattice beams for static and dynamic analyses. The Timoshenko beam theory is applied instead of the classical Euler-Bernoulli beam theory and the mechanical properties of lattice beam connection are derived based on the continuum medium using the non-local continuum theory. T...

متن کامل

Atomic-scale computations of the lattice contribution to thermal conductivity of single-walled carbon nanotubes

The lattice contribution to thermal conductivity of single-walled carbon nanotubes with three different screw symmetry (chirality) is studied using the Green–Kubo relation from linear response theory and molecular dynamics based thermal current auto-correlation functions. The interactions between carbon atoms are analyzed using the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010